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SUMMARY

We present an adaptive numerical technique for solving convection–diffusion-reaction problems, modelling
the transport of contaminant in porous media. We develop and analyse residual error estimators using
finite volume approximations. The error estimators with respect to both time and space yield global upper
and local lower bounds on the error measured in the energy norm. Computational results of various
model simulations of fluid flow and transport of contaminant in heterogeneous aquifers are presented and
discussed. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We aim to develop, analyse, implement, and test a computational self-adaptive technique for
simulation of fluid flow and transport of contaminant in porous media. We consider the concen-
tration equation describing miscible flow in heterogeneous porous media. The solutions of these
problems can involve multiple time and spatial scales, long simulation time periods, and many
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260 B. AMAZIANE ET AL.

coupled components which are convection dominated. The latter requires steep gradients to be pre-
served with minimal oscillation and numerical diffusion. Thus, dynamic time and spatial adaptivity
based on a posteriori error estimates is essential for accuracy and efficiency. Here, we develop a
computational technique that utilizes finite volume (FV) approximation of the differential equation
and a posteriori error estimators that will lead to adaptive local grid refinement.

FV methods are a class of discretization schemes that have proved to be highly successful in
approximating the solution of a wide variety of conservation laws systems. There is an extensive
literature on this subject. We will not attempt a literature review here, but merely mention a few
references. They are extensively used in fluid mechanics, meteorology, electromagnetics, semi-
conductor device simulation, models of biological processes and many other engineering areas
governed by conservative systems that can be written in integral control volume form (see, e.g.
[1–7]). The primary advantages of these methods are numerical robustness through the obtaining of
discrete maximum principles, applicability on very general unstructured meshes, and the intrinsic
local conservation properties of the resulting schemes.

The literature associated with the foundation and analysis of the FV methods for hyperbolic
problems is extensive (see, e.g. [2, 6] and the references therein). FV methods for elliptic problems
have been proposed and analysed under a variety of different names: box methods, covolume
methods, diamond cell methods, integral finite difference methods and FV element methods (see,
e.g. [7] for a review).

More recently, FV methods were developed and analysed for convection–diffusion problems
(see, for instance [2, 3, 8–17]). There are various approaches in deriving FV approximations of
convection–diffusion equations. The most general classification is obtained depending on the
choice of: (1) the FVs and (2) the discrete space to which the approximate solution belongs. The
domain is meshed and depending on whether the FVs are the elements from the original splitting
or volumes around the vertices of the original splitting, we have correspondingly cell-centred
and vertex-centred FV methods. For the vertex-centred FVs, depending on whether the discrete
space is piecewise constant over the FVs or piecewise linear over the original mesh, we have
correspondingly vertex-centred FV difference methods or vertex-centred FV element methods.
The cell-centred FV can lead to cell-centred FV difference methods or mixed methods.

In this paper we construct, theoretically justify, and test a computational method that yields
reliable error control of the FV discretization of a convection–diffusion-reaction equation, arising
from the modelling of flow and transport in porous media, in 2-D on unstructured grids. A detailed
description of the model is given by Bear and Bachmat [18]. We achieve balance between obtaining
reliable control of the error and efficient use of the available computational resources by an adaptive
process of local grid refinement based on a posteriori error analysis.

There is an extensive literature on adaptive methods for finite element approximations with
emphasis on both theoretical and computational aspects of the methods. Among the wide literature
we refer, e.g. to [19, 20]. There are few works related to a posteriori error estimates for FV methods
of convection–diffusion problems. Earlier results related to this topic in the context of flow and
transport in porous media were published in [4, 8, 12, 16, 21] and the references therein. Let us also
mention that a posteriori error analysis for a linear and nonlinear elliptic problem approximated
by a vertex-centred scheme were presented in [22–24].

In this paper, we introduce two kinds of indicators, both of them of residual type. The first one
is related to time discretization and is local with respect to the time discretization: thus, at each
time, it provides an appropriate information for the choice of the next time step. The second is
related to space discretization and is local with respect to both the time and space variable and the
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idea is that at each time it is an efficient tool for mesh adaptivity. Here, we develop and analyse a
fully discretized approach as in [25, 26] for finite element methods.

The paper is organized as follows. In Section 2 all necessary mathematical notations are defined,
the problem is formulated and the general assumptions are stated. In Section 3, the numerical
scheme for the model problem is presented with emphasis on the FV method employed for the
solution of the convection–diffusion-reaction equation. The construction of error indicators for this
approximation and the proof of upper and lower bounds for the error as a function of the indicators
are established in Section 4. A series of numerical examples demonstrates the efficiency of the
methodology for 2-D miscible flow problems through heterogeneous porous media where large
permeability variations are allowed.

2. STATEMENT OF THE PROBLEM AND ASSUMPTIONS

We consider the following convection–diffusion-reaction problem: Find u = u(x, t) such that

�u
�t

− div(D(x, t)∇u − qu) + au = f in �×]0, T [

u = 0 on �× ]0, T [
u(·, 0) = u0 in �

(1)

Here, � is a bounded polygonal domain in R2, with Lipschitz boundary � and ]0, T [ a time
interval, D is a uniformly positive function in �̄× ]0, T [, q is a given vector function (velocity),
a is a given reaction coefficient, and f is a given source term. For simplicity we have considered
a homogeneous Dirichlet boundary condition but it is easy to see that all the results are valid for
other boundary conditions.

In what follows we use standard notations for Sobolev spaces. Let us state the following
assumptions.

(A1) D is a positive and continuously time-differentiable function such that

∀x ∈ �̄,∀t ∈ ]0, T [, 0<Dmin � D(x, t) � Dmax<+∞
Here we consider, for the analysis of the method, that the dispersion D reduces to a scalar

function. However, the implementation is based on a realistic case where D is a positive definite
symmetric tensor.

(A2) f ∈ L2(0, T ; L2(�))

(A3) q∈C(0, T ; (W 1,∞(�))2)

(A4) a ∈C(0, T ; L∞(�))

(A5) There are two constant �� 0 and A� 0 such that

1
2divq + a � � and ‖a‖L∞(�) �A� in [0, T ]

(A6) u0 ∈ H1(�).

The space H1
0 (�) will be equipped with the energy norm

|‖v‖| = (‖D1/2∇v‖20,� + �‖v‖20,�)1/2 (2)
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262 B. AMAZIANE ET AL.

We denote the dual norm associated to (2) by

|‖�‖|∗ = sup
v∈H1

0 (�),v �=0

〈�, v〉
|‖v‖| , ∀� ∈ H−1(�) (3)

For v ∈ L2(0, T ; H1
0 (�)) we introduce the norm, for all t ∈ [0, T ]:

[[v]](t)=
(

‖v(t)‖20,� +
∫ t

0
|‖v(s)‖|2 ds

)1/2

(4)

We consider the following standard weak formulation of problem (1):

Find u ∈ L2(0, T ; H1
0 (�)) such that

�u
�t

∈ L2(0, T ; H−1(�)) and

∫
�

�u
�t

v dx +
∫

�
D∇u · ∇v dx +

∫
�
div(qu)v dx +

∫
�
auv dx (5)

=
∫

�
f v dx ∀v ∈ H1

0 (�) for a.e. t ∈ ]0, T [

u(·, 0) = u0

Assumptions (A1)–(A6) imply that this problem admits a unique solution (cf. [27]), and by taking
v equal to u(t) in (5) and integrating on the interval ]0, t[, we derive the following estimate, for
all t in [0, T ]:

[[u]](t)�
(

‖u0‖20,� + 1

Dmin
‖ f ‖2L2(0,t;H−1(�))

)1/2

(6)

or

[[u]](t)�
(

‖u0‖20,� + 1

�
‖ f ‖2L2(0,t;L2(�))

)1/2

(7)

In the case where a ≡ 0, i.e. no reaction term in the equation, we take A= 0 and we keep � in
the definition of the energy norm.

3. DISCRETIZATION OF THE PROBLEM

Before describing the FV discretization of the model problem (1), we give some notation.
We introduce a partition of the interval [0, T ] into subintervals [tn−1, tn], 1� n � N such that
0= t0<t1< · · · <tN = T . We denote by �n the length tn − tn−1, by � the N -uplet (�1, . . . , �N )

and by |�| the maximum of the �n , 1� n � N . Since our aim is mesh adaptivity, for each n,
0� n � N , we consider (Tn

h )h a regular triangulation of � by closed triangles. Each triangulation
Tn

h is derived from Tn−1
h by cutting some elements of Tn−1

h into a few subelements or, by the
opposite i.e. gluing together some elements of Tn−1

h into a new triangle. We denote also by Vn
h

the dual decomposition associated to Tn
h . Note that at the same time tn , several triangulations can
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Figure 1. A vertex-centred cell in 2-D.

be employed for mesh adaptivity and we use the notation Tn
h only for the last one. Furthermore,

let us denote un = u(tn), Dn = D(tn), an = a(tn) and f n = f (tn).
We consider the following semi-implicit time discretization of problem (1):

un − un−1

�n
− div(Dn∇un − q n−1un−1) + anun = f n in � (8)

We now describe the space discretization with a FV scheme. Let us give the assumptions which
are needed on the mesh. Assume that we have a family of triangulations Tn

h , which is regular
(see [28]). The partition Vn

h is chosen as the set of Nn volumes Vi that constitute the dual of
the triangulation Tn

h known as the Voronoi mesh and such that �̄ = ⋃
i = 1,...,Nn

Vi . This mesh is
constructed by connecting the middle points of edges and circumcentres of each neighbouring pair
of triangles having a common edge with a straight line segment (see Figure 1).

We denote by En
h the set of edges E of triangulation Tn

h , h>0 and �n
h the set of edges � of

the dual decomposition Vn
h . We denote by �i j the intersection of boundary �Vi and �Vj of two

control volumes.
We may construct another partition of �, denoted by Qn

h and formed by quadrilaterals Q defined
by Q = V ∩ T where V ∈Vn

h and T ∈Tn
h . We also need to define the set Ki

h = ⋃
K , formed

by the triangles K having xVi (the centre of the control volume Vi ) as a vertex and � as an edge.
Next, we define the spaces P1(T

n
h ) and P0(V

n
h ) by

P1(T
n
h ) ={vh ∈C0(�̄) : vh |T ∈P1; ∀T∈Tn

h }
and

P0(V
n
h ) ={wh ∈ L2(�̄) : wh |Vi ∈P0; i = 1, . . . , Nn}

where Pl is the set of polynomial functions of degree� l. Let (�i )i = 1,...,Nn be the set of basis
functions of P1(T

n
h ).

Denote by Im : L2(�) −→ P0(V
n
h ) the global Vn

h -piecewise constant interpolation operator
which is defined by

Imv :=

⎧⎪⎨
⎪⎩

1

|V |
∫
V

v dx for interior volume V

0 for boundary volume V (i.e. �V ∩ � �= ∅)

(9)

Note that the operator Im satisfies homogeneous Dirichlet boundary conditions, i.e. Imv = 0 on �.
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Integrating the semi-discrete problem (8) over a control volume Vi , we get∫
Vi

un−un−1

�n
dx− ∑

�⊂�Vi

{∫
�
Dn∇un ·n� ds−

∫
�
q n−1un−1 ·n� ds

}
+
∫
Vi
anun dx

=
∫
Vi

f n dx (10)

where n� is the unit outward normal vector on �.
Equation (10) could be written in the following form:∫

Vi

un − un−1

�n
dx − ∑

�⊂�Vi

(F(un, �) − G(un−1, �)) +
∫
Vi
anun dx =

∫
Vi

f n dx

where

F(v, �) :=
∫

�
D∇v ·n� ds

and

G(v, �) :=
∫

�
qv ·n� ds

The FV discretization is ended by defining a numerical flux functions Fh(v
n
h , �) and Gh(v

n−1
h , �).

For this, we will consider Vh the space of all continuous, piecewise linear finite element functions
corresponding to Tn

h and vanishing on �:

Vh := {vh ∈P1(T
n
h ) and vh |� = 0} (11)

Let Mn be the number of interior vertex. For uh = ∑Mn
i=1 ui�i , the numerical flux functions

Fh(unh, �) and Gn−1
h (uh, �) are defined by

Fh(u
n
h, �) = ∑

j∈J(i),�= �i j

∫
�i j

Dn
h∇unh ·n� ds

and

Gh(u
n−1
h , �) = ∑

j∈J(i),�= �i j

∫
�i j

((q n−1 ·n�i j )
+un−1

h (xi ) + (q n−1 ·n�i j )
−un−1

h (x j )) ds

where

J(i)={ j ∈ {1, . . . , Mn} : supp�i ∩ supp� j �= ∅}
(qn−1 ·n)+ =max(0,qn−1 ·n), (qn−1 ·n)− =min(0,qn−1 ·n)

and Dn
h is an approximation of D(tn) which is a piecewise polynomial of degree smaller than a

fixed integer � and such that there exists a constant c(D) only depending on D satisfying

‖D(tn) − Dn
h‖L∞(�) � c(D)h�+1, 1� n � N (12)
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ADAPTIVE VERTEX CENTRED FINITE VOLUME METHOD 265

We assume that anh is also an approximation of a(tn) which is piecewise polynomial of degree
smaller than a fixed integer � and such that there exists a constant c(a) only depending on a
satisfying

‖a(tn) − anh‖L∞(�) � c(a)h�+1, 1� n � N (13)

The fully discrete problem is then given by

Find (unh)0� n � N ∈ (Vh)
N+1 satisfying

u0h = �hu0 in �∫
V n
i

unh − un−1
h

�n
dx − ∑

j∈I(i)

∫
�i j

(Dn
h∇unh ·n�i j

−[(qn−1 ·n�i j )
+un−1

h (xi ) + (qn−1 · n�i j )
−un−1

h (x j )]) ds

+
∫
V n
i

anhu
n
h dx =

∫
V n
i

f n dx

for i = 1, 2, . . . , Mn, n = 1, . . . , N

(14)

where V n
i for 1� i � Mn , are the interior control volumes in Vn

h , a
n
h is a piecewise linear approx-

imation of an and �h is the L2-projection on Vh .
The analysis and numerical results of this scheme applied to immiscible and miscible flow in

porous media can be found in [29, 30] and [31, 32], respectively.
Remark 3.1
The terms

∫
Vi

((un − un−1)/�n) dx and
∫
Vi
anun dx could be approximated by |Vi |((uni − un−1

i )/�n)
and |Vi |ani uni , respectively, where uni = unh(xi ) and ani = anh (xi ).

With the family (unh)0� n � N we associate the function uh� on [0, T ] which is linear on each
interval [tn−1, tn], 1� n � N , and equal to unh at tn , for 0� n � N . This function writes, for
1� n � N

uh�(t) = unh − tn − t

�n
(unh − un−1

h ) ∀t ∈ [tn−1, tn] (15)

uh�(t) = un−1
h + t − tn−1

�n
(unh − un−1

h ) ∀t ∈ [tn−1, tn] (16)

4. A POSTERIORI ERROR ESTIMATES

In this section, we derive an adaptive numerical technique using the FV approximation described
in the previous section. The method expresses the error in terms of the residual of the approximate
solution. For this, we will bound the norms of [[u − uh�]](tn), for 1� n � N , as a function of
indicators.
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Let us define the residuals and inter-element jumps of the approximation (unh)n:

Rn
h|Q :=

(
f nh − unh − un−1

h

�n
+ div(Dn

h∇unh) − div(qn−1un−1
h ) − anhu

n
h

)
(17)

rnh|E := [Dn
h∇unh · nE ] (18)

znh|� :=qn−1 · n̄�(u
n−1
h (xi ) − un−1

h (x)) (19)

where [.] denotes as usual the jump across the edge E .
The local spatial error indicators are defined by

(�nR)2 := ∑
V∈T∗

∑
Q⊂V

�2Q‖Rn
h‖20,Q (20)

(�nr )
2 := D−1/2

min

∑
E∈E

�E‖rnh‖20,E (21)

(�nz )
2 := D−1/2

min

∑
�∈�n

h

��‖znh‖20,� (22)

where �S :=min(hSD
−1/2
min , �−1/2) for S = K , E, �.

Finally the global spatial error indicator is given by

(�nh)
2 := (�nR)2 + (�nr )

2 + (�nz )
2 (23)

We define the temporal error indicator as

Hn
h :=

[�n
3

(‖(Dn
h )

1/2∇(unh − un−1
h )‖2 + ‖div(qn−1(un−1

h − unh))‖2

+‖(anh )1/2(unh − un−1
h )‖2)

]1/2
(24)

and the indicator related to data by

Gn
h(t) :=max(�−1/2, D−1/2

min )(‖ f − f nh + div((qn−1 − q)uh�) + (anh − a)uh�‖0
+‖(Dn

h − D)∇uh�‖0) (25)

4.1. An upper bound for the error

In this subsection we will state an upper bound for the error. The following result holds:

Theorem 4.1
Let u be the solution of problem (5) and (unh)n � 1 the solution of problem (14), then there exists
a constant C independent of h, such that

[[u − uh�]](tn) �C

[
‖u0 − �0u

0‖20 +
n∑

m=1

(
(�mh )2�m + (Hm

h )2 +
∫ tm

tm−1

|Gn
h(t)|2

)]1/2
(26)

where �mh , H
m
h and Gn

h are defined by (23)–(25), respectively.
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Proof
For all v ∈ H1

0 (�) we have∫
�

�
�t

(u − uh�)v dx +
∫

�
D∇(u − uh�) · ∇v dx

+
∫

�
div(q(u − uh�))v dx +

∫
�
a(u − uh�)v dx

=
∫

�
( f − f nh )v dx +

∫
�
f nh v dx −

∫
�

unh − un−1
h

�n
v dx −

∫
�
Dn
h∇unh · ∇v dx

+
∫

�
Dn
h∇(unh − uh�) · ∇v dx +

∫
�
(Dn

h − D)∇uh� · ∇v dx

−
∫

�
div(q n−1un−1

h )v dx +
∫

�
div(q n−1(un−1

h − uh�))v dx

+
∫

�
div((q n−1 − q)uh�)v dx −

∫
�
anhu

n
hv dx

+
∫

�
anh (u

n
h − uh�)v dx +

∫
�
(anh − a)uh�v dx (27)

For all v ∈ H1
0 (�) we denote by

A(v) :=
∫

�
f nh v dx −

∫
�

unh − un−1
h

�n
v dx −

∫
�
Dn
h∇unh · ∇v dx

−
∫

�
div(qn−1un−1

h )v dx −
∫

�
anhu

n
hv dx

B(v) :=
∫

�
Dn
h∇(unh − uh�) · ∇v dx +

∫
�
div(q n−1(un−1

h − uh�))v dx

+
∫

�
anh (u

n
h − uh�)v dx

C(v) :=
∫

�
( f − f nh )v dx +

∫
�
(Dn

h − D)∇uh� · ∇v dx +
∫

�
div((q n−1 − q)uh�)v dx

+
∫

�
(anh − a)uh�v dx

(28)

and evaluate separately each term A(v), B(v) and C(v).
Evaluation of the term A:
Since Imv is piecewise constant we can write A as

A(v) = ∑
V∈Vn

h

∫
V

(
f nh v−unh−un−1

h

�n
v−Dn

h∇unh · ∇(v−Imv)−div(qn−1un−1
h )v−anhu

n
hv

)
dx
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An integration by parts gives

A(v) = ∑
V∈Vn

h

{ ∑
Q⊂V

∫
Q

(
f nh v − unh − un−1

h

�n
v + div(Dn

h∇unh(v − Imv))

− div(qn−1un−1
h )v − anhu

n
hv

)
dx +

∫
�V

Dn
h∇unh · nImv ds

}

+ ∑
E∈En

h

∫
E
[Dn

h∇unh ·nE ](v − Imv) ds

= ∑
V∈Tn

h

{ ∑
Q⊂V

∫
Q

(
f nh − unh − un−1

h

�n
+ div(Dn

h∇unh)

− div(qn−1un−1
h ) − anhu

n
h

)
(v − Imv) dx

+
∫

�V
Dn
h∇unh · nImv ds

}
+ ∑

E∈En
h

∫
E
[Dn

h∇unh · nE ](v − Imv) ds

+ ∑
V∈Tn

h

∫
V

(
f nh − unh − un−1

h

�n
− div(q n−1un−1

h ) − anhu
n
h

)
Imv dx

For interior volumes V , the FV discretization (14) implies that the last term is equal to

− ∑
Vi∈Tn

h

(Imv)i

( ∑
�i j⊂�Vi

∫
�i j

(qn−1 ·n�i j u
n−1
h (x) − (q n−1 · n�i j )

+un−1
h (xi )

− (q n−1 · n�i j )
−un−1

h (x j )) ds

)

where (Imv)i = (Imv)|Vi , and if we take n̄ to be the normal to �i j such that qn−1 · n̄� 0 and the
indices (ij) are such that (xi − x j ) · n̄� 0 the last term is equal to

− ∑
T∈Tn

h

∑
�i j∈�n

h ,�i j⊂T

((Imv)i − (Imv) j )

∫
�i j

qn−1 · n̄(un−1
h (xi ) − un−1

h (x)) ds

With the help of (17)–(19), the expression A(v) writes

A(v) = ∑
V∈Vn

h

∑
Q⊂V

∫
Q
Rn
h(v − Imv) dx + ∑

E∈En
h

∫
E
rnh(v − Imv) ds

− ∑
T∈Tn

h

∑
�i j∈�n

h ,�i j⊂T

((Imv)i − (Imv) j )

∫
�i j

znh ds (29)

�
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Now the interpolation error bounds for Im defined by (9) is given by the following Lemma.

Lemma 4.2
Let v ∈ H1

0 (�), we have the following estimates:

(1) ‖v − Imv‖0,K � c1�K |‖v‖|	K ∀K ∈K, K ⊂ Q (30)

(2) ‖v − Imv‖0,E � c2D
−1/4
min �1/2E |‖v‖|	E ∀E ∈En

h (31)

(3) ‖(Imv)i − (Imv) j‖0,�i j � c3D
−1/4
min �1/2�i j |‖v‖|	�i j

∀�i j ∈ �n
h (32)

where �S :=min(hSD
−1/2
min , �−1/2) for S = K , E, �i j , and the constants c1, c2 and c3 are independent

of h.

Proof
(1) Let v ∈ H1(�), V ∈Vn

h , K ∈K, K ⊂ Q and E ∈En
h . We have the standard estimations

‖v − Imv‖0,K � chK ‖∇v‖	K

‖v − Imv‖0,K � c′‖v‖K
Hence, we get the bound (30)

‖v − Imv‖0,K � c1min{hK D−1/2
min , �−1/2}|‖v‖|	K

(2) In order to show the interpolation bound (31) we consider the well-known trace inequality
(cf. [33]) for w ∈ H1(T), for an arbitrary T∈Tn

h

‖w‖0,E � c(h−1/2
T ‖w‖0,T + ‖w‖1/20,T‖∇w‖1/20,T)

We take w = v − Imv and restrict ourself to the small triangle K ⊂T where we have w ∈ H1(K ),
and we use the bound (30)

‖v − Imv‖20,E = ∑
K⊂	T

‖v − Imv‖20,E∩K

� c
∑

K⊂	T

(h−1
K �2K |‖v‖|2	T

+ �K |‖v‖|	T D
−1/2
min |‖v‖|	T )

� c
∑

K⊂	T

(h−1
K �2K + D−1/2

min �K )|‖v‖|2	T

� 2c
∑

K⊂	T

D−1/2
min �K |‖v‖|2	T

� c2D
−1/2
min �E |‖v‖|2	T

(3) For the bound (32), we remark that

‖(Imv)i − (Imv) j‖0,�i j � ‖(Imv)i − v‖0,�i j + ‖v − (Imv) j‖0,�i j
and we use the same argument as in (2). This completes the proof of Lemma 4.2 �
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One can conclude from Lemma 4.2 and (29) that

A(v) �
∑

V∈Vn
h

∑
Q⊂V

�Q‖Rn
h‖0,Q |‖v‖|	Q + ∑

E∈En
h

D−1/4
min �1/2E ‖rnh‖0,E |‖v‖|	E

+ ∑
�∈�n

h

D−1/4
min �1/2� ‖znh‖0,�|‖v‖|	� (33)

where Rn
h, r

n
h and znh are defined by (17)–(19), respectively.

By using the fact that the domains 	Q , 	E and 	�i j only consist of a finite number of elements
that is bounded by the minimal ratio of the diameter of any element to the diameter of its largest
inscribed ball, we conclude that

A(v) � �nh |‖v‖|
and

n∑
m=1

∫ tm

tm−1

A(v) dt �
n∑

m=1

∫ tm

tm−1

�mh |‖v‖| dt �
n∑

m=1
�mh �1/2m

(∫ tn

0
|‖v‖|2 dt

)1/2

(34)

where �nh is given by (23).

If we use the definition of �nr and �nz without the term D−1/2
min we obtain

n∑
m=1

∫ tm

tm−1

A(v) dt �C1

n∑
m=1

∫ tm

tm−1

�mh |‖v‖| dt �C1

n∑
m=1

�mh �1/2m

(∫ tn

0
|‖v‖|2 dt

)1/2

(35)

where C1 = sup(1, D−1/2
min ).

Evaluation of the term B:
From (15), (16), (12) and (13) we have for 0� t � tn∫

�
Dn
h∇(unh − uh�) · ∇v dx =

(
tn − t

�n

)∫
�
Dn
h∇(unh − un−1

h ) · ∇v dx

�
(
tn − t

�n

)
C2(D)‖(Dn

h )
1/2∇(unh − un−1

h )‖|‖v‖|
where C2(D) = (1 + c(D)h�+1/D1/2

min).∫
�
anh (u

n
h − uh�)v dx =

(
tn − t

�n

)∫
�
anh (u

n
h − un−1

h )v dx

�
(
tn − t

�n

)
c(a)‖(anh )1/2(unh − un−1

h )‖|‖v‖|
where C2(a)= (1 + c(a)h�+1/�1/2) and∫

�
div(q n−1(un−1

h − uh�))v dx =
(
t − tn−1

�n

)∫
�
div(q n−1(un−1

h − unh))v dx

�
(
t − tn−1

�n

)
�−1/2‖div(q n−1(un−1

h − unh))‖|‖v‖|
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Let

nnh :=
(
tn − t

�n

)
‖(Dn

h )
1/2∇(unh − un−1

h )‖ (36)

fnh :=
(
t − tn−1

�n

)
‖div(q n−1(un−1

h − unh))‖ (37)

anh :=
(
tn − t

�n

)
‖(anh )1/2(unh − un−1

h )‖ (38)

One can conclude that

B(v) �C4(D, a, �)(nnh + fnh + anh)|‖v‖|
where C4(D, a, �) =max(C2(D),C3(a), �−1/2).

With the notation (24), we have

n∑
m=1

∫ tm

tm−1

B(v) dt � C4(D, a, �)
n∑

m=1
Hm

h

(∫ tm

tm−1

|‖v‖|2 dt
)1/2

� C4(D, a, �)
n∑

m=1
Hm

h

(∫ tn

0
|‖v‖|2

)1/2

(39)

Evaluation of the term C:

C(v) :=
∫

�
( f − f nh + div((q n−1 − q)uh�) + (anh − a)uh�)v dx

+
∫

�
(Dn

h − D)∇uh� · ∇v dx

� (�−1/2‖ f − f nh + div((q n−1 − q)uh�) + (anh − a)uh�‖0
+D−1/2

min ‖(Dn
h − D)∇uh�‖0)|‖v‖|

One can conclude that

n∑
m=1

∫ tm

tm−1

C(v)�
n∑

m=1

(∫ tm

tm−1

|Gn
h(t)|2

)1/2 (∫ tn

0
|‖v‖|2

)1/2

(40)

where Gn
h is defined by (25).

Now we integrate (27) between 0 and tn , we use the inequalities (35), (39), (40), we take
v = (u − uh�)(·, t) for 0� t � tn and we use the fact that for all v ∈ H1

0 (�) we have∫
�

|D1/2∇v|2 dx +
∫

�
div(qv)v dx +

∫
�
a|v|2 dx

=
∫

�
|D1/2∇v|2 dx +

∫
�

(
1

2
divq + a

)
|v|2 dx � |‖v‖|2

to obtain (26). This completes the proof of Theorem 4.1. �
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4.2. A lower bound for the error

Global upper bounds are sufficient to obtain a numerical solution with an accuracy below a
prescribed tolerance. However, local lower bounds are necessary to achieve the prescribed tolerance
with a minimal number of grid-points. In this subsection we derive a lower bound for the error
following the approach developed in [25, 26]. We prove separate bounds for each indicator �mh and
Hm

h . We begin with the latter.

Proposition 4.3
There exists a constant C1 =C1(D, �,q) such that

Hn
h � C1

⎡
⎣(∫ tn

tn−1

∥∥∥∥ �
�t

(u − uh�)

∥∥∥∥
2

−1,�
dt

)1/2

+
(∫ tn

tn−1

|‖u − uh�‖|2 dt
)1/2

+ �1/2n �nh +
(∫ tn

tn−1

|Gn
h(t)|2 dt

)1/2
⎤
⎦

for all 1� n � N .

Proof
First of all we remark that(�n

3

)1/2 |‖unh − un−1
h ‖| =

(�n
3

)1/2 [‖(Dn)1/2∇(unh − un−1
h )‖2 + �‖unh − un−1

h ‖2]1/2

�
(�n
3

)1/2 [c(D)h�+1‖(Dn
h )

1/2∇(unh − un−1
h )‖2

+ c(a)h�+1‖(anh )1/2(unh − un−1
h )‖2]1/2

So we have (�n
3

)1/2 |‖unh − un−1
h ‖| �C5H

n
h (41)

where C5 = h�+1max(c(D), c(a)).
By (27) and (28) we have v = unh − un−1

h

(Hn
h)

2 =
∫ tn

tn−1

∫
�

�
�t

(u − uh�)v dx dt +
∫

�
D∇(u − uh�) · ∇v dx +

∫
�
div(q(u − uh�))v dx

+
∫

�
a(u − uh�)v dx −

∫ tn

tn−1

(A(unh − un−1
h ) + C(unh − un−1

h )) dt

�
∫ tn

tn−1

(
1

D1/2
min

∣∣∣∣
∥∥∥∥ �
�t

(u − uh�)

∥∥∥∥
∣∣∣∣∗ + (1 + ‖q‖(L∞(�))2(�Dmin)

−1/2)|‖u − uh�‖|
)

×|‖unh − un−1
h ‖| dt +

∫ tn

tn−1

(C1�
n
h + Gn

h(t))|‖unh − un−1
h ‖| dt
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�

⎡
⎣
(∫ tn

tn−1

1

Dmin

∣∣∣∣
∥∥∥∥ �
�t

(u − uh�)

∥∥∥∥
∣∣∣∣
2

∗
dt

)1/2

+ C6

(∫ tn

tn−1

|‖u − uh�‖|2 dt
)1/2

+C1�
1/2
n �nh +

(∫ tn

tn−1

|Gn
h(t)|2 dt

)1/2
⎤
⎦ �1/2h |‖unh − un−1

h ‖|

where C6 = 1 + ‖q‖(L∞(�))2(�Dmin)
−1/2. We conclude by using (41)

Hn
h � C1

⎡
⎣
(∫ tn

tn−1

1

Dmin

∣∣∣∣
∥∥∥∥ �
�t

(u − uh�)

∥∥∥∥
∣∣∣∣
2

∗
dt

)1/2

+
(∫ tn

tn−1

|‖u − uh�‖|2 dt
)1/2

+�1/2n �nh +
(∫ tn

tn−1

|Gn
h(t)|2 dt

)1/2
⎤
⎦

where C1 = √
3C5max(1,C6,C1). This completes the proof of Proposition 4.3 �

Proposition 4.4
There exists a constant C2 =C2(a, D, �,q) such that

�1/2n �nh � C2

⎡
⎣
(∫ tn

tn−1

∣∣∣∣
∥∥∥∥ �
�t

(u − uh�)

∥∥∥∥
∣∣∣∣
2

∗
dt

)1/2

+
(∫ tn

tn−1

|‖u − uh�‖|2 dt
)1/2

+
(∫ tn

tn−1

‖div(q(u − uh�)‖2 dt
)1/2

+
(∫ tn

tn−1

|Gn
h(t)|2 dt

)1/2

+
(∫ tn

tn−1

(|‖un−1
h − u‖|2) dt

)1/2

+ ‖u0‖0,� + �−1/2‖ f ‖L2(0,tn;L2(�))

⎤
⎦

for all 1� n � N .

Proof
Recall that for all v ∈ H1

0 (�) the term A(v) is given by

A(v) = ∑
V∈Vn

h

∑
Q⊂V

∫
Q
Rn
h(v − Imv) dx + ∑

E∈En
h

∫
E
rnh(v − Imv) ds

− ∑
T∈Tn

h

∑
�i j∈�n

h ,�i j⊂T

((Imv)i − (Imv) j )

∫
�i j

znh ds (42)

and has also the expression

A(v) = ∑
T∈Tn

h

∫
T
Rn
hv dx + ∑

E∈En
h

∫
E
rnhv ds

Following [25, 26], we introduce for any elementT ∈ Tn
h and any edge E ∈ En

h the corresponding
bubble functions �K and �E . We denote by 	E the support of �E which is the union of two
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elements of Tn
h sharing E and set

wn = 
1
∑

T∈Tn
h

�2T�TR
n
h + 
2D

−1/2
min

∑
E∈En

h

�E�Er
n
h

Using the same arguments as in [26], we can choose the constants �1 and �2 such that

A(wn) � (�nR)2 + (�nr )
2 (43)

|‖wn‖|�C((�nR)2 + (�nr )
2)1/2 (44)

So we have

(�nR)2 + (�nr )
2 + (�nz )

2 = (�nh)
2 � A(wn) + (�nz )

2

|‖wn‖| � C∗�nh

To bound the term �nh we use the last inequalities and (27). Let � be an arbitrary parameter such
that � � 0

�n(�
n
h)

2 =
∫ tn

tn−1

(� + 1)

(
tn − t

�n

)�

(�nh)
2 dt

�
∫ tn

tn−1

(� + 1)

(
tn − t

�n

)�

A(wh) + �n(�
n
z )

2 dt

�
∫ tn

tn−1

(� + 1)

(
tn − t

�n

)� ∫
�

�
�t

(u − uh�)wn dx dt

+
∫ tn

tn−1

(� + 1)

(
tn − t

�n

)� ∫
�
D∇(u − uh�) · ∇wn dx dt

+
∫ tn

tn−1

(� + 1)

(
tn − t

�n

)� ∫
�
div(q(u − uh�))wn dx dt

+
∫ tn

tn−1

(� + 1)

(
tn − t

�n

)� ∫
�
a(u − uh�)wn dx dt

−
∫ tn

tn−1

(� + 1)

(
tn − t

�n

)�

(B(wn) + C(wn)) dt + �n(�
n
z )

2

�
∫ tn

tn−1

C∗�nh(� + 1)

(
tn − t

�n

)� ( ∣∣∣∣
∥∥∥∥ �
�t

(u − uh�)

∥∥∥∥
∣∣∣∣∗ + |‖u − uh�‖|

+ �−1/2‖div(q(u − uh�))‖ + A|‖u − uh�‖| + Gn
h(t)

)
dt

−
∫ tn

tn−1

(� + 1)

(
tn − t

�n

)�

B(wn) dt + �n(�
n
z )

2
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Since (∫ tn

tn−1

[
(� + 1)

(
tn − t

�n

)�]2
dt

)1/2

= �1/2n
� + 1√
2� + 1

we conclude that

�n(�
n
h)

2 � C∗�nh�
1/2
n

� + 1√
2� + 1

⎡
⎣(∫ tn

tn−1

∣∣∣∣
∥∥∥∥ �
�t

(u − uh�)

∥∥∥∥
∣∣∣∣
2

∗
dt

)1/2

+ (1 + A)

(∫ tn

tn−1

|‖u − uh�‖|2 dt
)1/2

+ �−1/2
(∫ tn

tn−1

‖div(q(u − uh�)‖2 dt
)1/2

⎤
⎦

−
∫ tn

tn−1

(� + 1)

(
tn − t

�n

)�

B(wn) dt + �n(�
n
z )

2

Let us now bound the last integral in term of �nh . We have∫ tn

tn−1

(� + 1)

(
tn − t

�n

)�

B(wn) dt = �n
� + 1

� + 2

∫
�
(Dn

h∇(unh − un−1
h )∇wn + anh (u

n
h − un−1

h )wn) dx

+ �n
1

� + 2

∫
�
div(q n−1(unh − un−1

h ))wn dx

� �1/2n
� + 1

� + 2
C4(D, a, �)

√
3Hn

hC
∗�nh

Using Proposition 4.3 we obtain

�n(�
n
h)

2 � C3�
1/2
n �nh

⎡
⎣
(∫ tn

tn−1

∣∣∣∣
∥∥∥∥ �
�t

(u − uh�)

∥∥∥∥
∣∣∣∣
2

∗
dt

)1/2

+
(∫ tn

tn−1

|‖u − uh�‖|2 dt
)1/2

+
(∫ tn

tn−1

‖div(q(u − uh�)‖2 dt
)1/2

+
(∫ tn

tn−1

|Gn
h(t)|2 dt

)1/2
⎤
⎦

+ �n(�
n
h)

2C∗C1C4
� + 1

� + 2
+ �n(�

n
z )(�

n
h)

where C3 =max((� + 1)/(
√
2� + 1)max(1 + A, �−1/2), (� + 1)/(� + 2)C3

√
3C1).

Let m � 1 be an integer. Since (� + 1)/(� + 2) � (� + m)/(� + 2), we can choose � and m such
that C∗C1C4(� + 1)/(� + 2) = 1

2 and conclude that

�1/2n �nh � 2C3

⎡
⎣(∫ tn

tn−1

∣∣∣∣
∥∥∥∥ �
�t

(u − uh�)

∥∥∥∥
∣∣∣∣
2

∗
dt

)1/2

+
(∫ tn

tn−1

|‖u − uh�‖|2 dt
)1/2

+
(∫ tn

tn−1

‖div(q(u − uh�)‖2 dt
)1/2

+
(∫ tn

tn−1

|Gn
h(t)|2 dt

)1/2
⎤
⎦+ 2�1/2n �nz
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Let us now bound the term �1/2n �nz . By (19), Lemma (4.2) and (7) we have

(�1/2n �nz )
2 =

∫ tn

tn−1

(�nz )
2 dt

=
∫ tn

tn−1

D−1/2
min

∑
�i j⊂�n

h

��i j ‖q n−1 · n̄�i j (u
n−1
h (xi ) − un−1

h (x)‖20,�i j dt

� D−1/2
min ‖q‖(L∞(�))2c2

∫ tn

tn−1

∑
�i j⊂�n

h

�2�i j |‖un−1
h ‖|2	�i j

dt

� D−1/2
min ‖q‖(L∞(�))22c2 max

�∈�n
h

��

∫ tn

tn−1

|‖un−1
h ‖|2 dt

� D−1/2
min ‖q‖(L∞(�))24c2 max

�∈�n
h

��

∫ tn

tn−1

(|‖un−1
h − u‖|2 + |‖u‖|2) dt

� C3

∫ tn

tn−1

(|‖un−1
h − u‖|2 + ‖u0‖20,� + D−1

min‖ f ‖2L2(0,tn;L2(�))
) dt

where C3 = D−1/2
min ‖q‖(L∞(�))22c2 max�∈�n

h
��. The result of Proposition 4.3 is proved by taking

C2 =max(C2,C3). �

5. NUMERICAL SIMULATIONS

In this section, we present some numerical results in 2-D based on the scheme presented in this
paper for the concentration equation for miscible flow problems.

For the sake of completeness we recall the coupled system used for the simulations. The flow
and transport of miscible displacement of one incompressible fluid by another through a porous
medium � over a time period ]0, T [ is governed by the following system (see, e.g. [18]):

Pressure equation:

q= − K (x)

�(c)
∇ p in �×]0, T [

divq= 0 in �×]0, T [
(45)

Concentration equation:

�(x)
�c
�t

− div(D(x,q)∇c − cq) = f (x, t) in �×]0, T [ (46)

subject to boundary and initial conditions, p and q are the pressure and Darcy velocity of the fluid
mixture, � and K are the porosity and the permeability of the medium, � is the viscosity of the
mixture, c is the concentration of the contaminant solute, and f is the external flow rate.
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The form of the diffusion–dispersion tensor D that we use in our simulator is given by:

D(x,q) = de I + |q|[�lE(q) + �t(I − E(q))] (47)

with Ei j (q) = qiq j/|q|2, de is the effective diffusion coefficient, and �l and �t are the magnitudes
of longitudinal and transverse dispersion, respectively.

Because the magnitude of the diffusion–dispersion tensor D is often much smaller than that of
the Darcy velocity q, the concentration equation (46) is a strongly convection–dominated PDE with
small diffusion and dispersion terms indicated by the size of the coefficients de, �l and �t in (47).
Moreover, (45)–(46) is a coupled system of PDEs which is typically defined on a very large physical
domain.

One important issue in the simulation of porous medium flows is the manner in which the
Darcy velocity q is calculated. Since the convection and diffusion–dispersion terms in (46) are
governed by the Darcy velocity, accurate approximation of the concentration c requires an accurate
approximation to the Darcy velocity q.

An IMPES simulator, MFlow (cf. [32]), has been developed which applies a mixed hybrid
finite element method [34] for computing an accurate approximation of the velocity q and the FV
described here for the concentration equation. Our implementation for the test problems uses the
lowest Raviart–Thomas element that specify piecewise constant pressure and piecewise continuous
flux for the velocity.

It should be mentioned that the theoretical analysis of the method described in this paper for
the coupled system is far from complete. Nevertheless the numerical experiments show, that with
the FV discretization, the upwind and the adaptive grid control based on the error indicators, we
have a powerful tool for solving flow and transport of miscible flow problems.

The two example problems used to illustrate the methodology are (1) a heterogeneous reservoir
with two different permeability distributions, with values ranging from 10−5 to 1 and (2) the
saltdome problem (cf. [8]). We begin the solution process with an initial coarse mesh which
describes adequately the given problem (domain, coefficients, boundary conditions, and right-hand
side). During the solution process the grid is refined (based on a criteria formulated from one
of the three error estimators) until maximum refinement level is reached or the local error is
found below a given threshold. The grids obtained from all error estimators differ slightly, but
in all cases they are refined in the same areas and produce comparable results. In both cases, as
expected, the meshes are refined around the areas where the singularities are located. The adaptivity
of our FV method highly resolves the solution within the critical regions of the computational
domain.

5.1. Test problem 1: heterogeneous case

In this example, we consider a heterogeneous reservoir � = (0, 1) × (0, 1) with two different
permeability distributions as shown in Figure 2: (black, K = 10−5) and (white, K = 1). A source
term is placed at the lower left-hand corner of the reservoir, �in, and an outlet, �out, is placed
at the top right-hand corner of the reservoir. The boundary conditions are illustrated in Figure 2:
q.n= −0.1 on �in and p= 1 on �out. All the �noflow boundaries are no flow boundaries. The
parameters were chosen as follows: �= 0.2, � = 1, de = 10−5, �l = 5, �t = 0.5, c0 = 0 and f = 1
on �in and = 0 elsewhere.

It is well known in literature that the jump of the coefficients at the inner boundaries may
cause problems. We look for the behaviour of the adaptive algorithm near the inner boundaries.
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Figure 2. Permeability distribution and computational domain.

Figure 3. Primal grid.

In Figure 3 we present the primal grid and in Figure 4 the adaptive grid. From these figures, we
can see that the local error estimators lead to local refinement around the expected regions where
there are strong and sharp variation in permeability. Table I gives the results for the error indicators
for different levels of refinement obtained. In order to compare these results with those when no
local refinement is applied, we also include the computations obtained with a uniform grid (cf.
Table I). We note that the grid follows the contour lines of the concentration as shown in Figure 6.
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Figure 4. Adaptive grid.

Table I. Test problem 1 at t = 10 years.

Number of
triangles Level CPU time �nRh

�nrh �nzh

Primal grid 660 1 0min 1.00 s 3.198e−02 8.604e−07 1.750e−02

Adaptive grid 2885 2 0min 20.81 s 8.26e−03 3.655e−07 1.281e−02

6424 3 0min 48.18 s 4.359e−03 6.521e−08 1.042e−02

8894 4 1min 10.55 s 2.940e−03 4.623e−08 9.794e−03

11 454 5 1min 30.36 s 2.612e−03 3.772e−08 9.152e−03

14 562 6 1min 59.53 s 2.413e−03 3.371e−08 8.341e−03

22 082 7 4min 20.17 s 1.252e−03 1.867e−08 4.244e−03

27 382 8 5min 59.17 s 1.023e−03 1.012e−08 3.152e−03

Uniform grid 93 186 9 31min 56.49 s 8.125e−04 7.925e−09 3.012e−03

Moreover, at the inner boundaries of the domain the finer grid sizes appear. So the area, where
we suppose the most problems in calculation, are of finer grid size. From concentration contours
in Figures 5–7 and Table I, we can conclude that the accuracy of the solution obtained on a mesh
with adaptive grid is comparable to the accuracy of the uniform grid, while the number of triangles
are four times smaller.

5.2. Test problem 2: saltdome

We consider the saltdome problem presented in [8] which describes the flow over a saltdome which
is sitting at the bottom of an aquifer initially filled with pure water (c0 = 0). The computational
domain is defined as �=[0, 900] × [0, 300]. The boundary and initial conditions are illustrated
in Figure 8. At the top of the domain � a pressure difference is prescribed. The saltdome is
situated in the middle of the lower boundary (see Figure 8). All other boundaries are no flow
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Figure 5. Concentration for primal grid.
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Figure 6. Concentration for adaptive grid.
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Figure 7. Concentration for uniform grid.
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Figure 8. Geometry, initial and boundary conditions for the saltdome problem.

boundaries. The parameters were chosen as follows: K = 3.5× 10−2, �= 0.2, de = 0.86, � = 1,
�l = 20, �t = 2, and p= − 111x + 105 at the top boundary. Here the singularity is due to the
source term, which is taken to be 1 concentrated at the boundary �inflow (see Figure 8). Figures
9–11 show the adaptive grid and the salt concentration at three time steps. Table II gives the
results for the error indicators for different levels of refinement and the computations obtained
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Figure 9. Adaptive grid and concentration contours at t = 5 years.
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Figure 10. Adaptive grid and concentration contours at t = 40 years.
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Figure 11. Adaptive grid and concentration contours at t = 240 years.

with a uniform grid. Again, we can see that the local error estimators lead to local refinement
around the expected concentration front. The salt concentration shows good agreement with those
in [8].
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Table II. Test problem 2.

Number of Final time
triangles Level CPU time �nRh

�nrh �nzh (years)

Mesh 0 505 1 0min 0.12 s 2.246e−02 1.377e−02 3.637e−03 5
779 2 0min 0.25 s 7.027e−03 1.157e−02 3.041e−03

Mesh 1 2710 1 0min 1.91 s 5.493e−03 9.983e−03 3.827e−03 40
3591 2 0min 2.71 s 5.041e−03 8.950e−03 3.410e−03

Mesh 2 3400 1 0min 10.50 s 4.576e−03 8.412e−03 3.640e−03 240
5552 2 0min 35.48 s 1.788e−03 8.388e−03 3.274e−03

8582 3 1min 14.99 s 1.423e−03 7.647e−03 2.914e−03

11 068 4 1min 42.31 s 3.618e−04 6.624e−03 2.304e−03

19 045 5 8min 0.63 s 4.323e−05 1.361e−03 1.250e−03

Uniform grid 41 318 6 28min 7.51 s 1.922e−05 8.910e−04 7.420e−04 240
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